Главная » Статьи » ПСЭ » Кремний

Статьи

Кремний

Кремний
Атомный номер14
Внешний вид простого веществаПоликристаллический кремний(99,9%)
В аморфной форме —
коричневый порошок,
в кристаллической — тёмно-серый,
слегка блестящий
Свойства атома
Атомная масса
(молярная масса)
28,0855 а. е. м. (г/моль)
Радиус атома132 пм
Энергия ионизации
(первый электрон)
786,0(8,15) кДж/моль (эВ)
Электронная конфигурация[Ne] 3s2 3p2
Химические свойства
Ковалентный радиус111 пм
Радиус иона42 (+4e) 271 (-4e) пм
Электроотрицательность
(по Полингу)
1,90
Электродный потенциал0
Степени окисления+4, −4, +2
Термодинамические свойства простого вещества
Плотность2,33 г/см³
Молярная теплоёмкость20,16[1] Дж/(K·моль)
Теплопроводность149 Вт/(м·K)
Температура плавления1688 K
Теплота плавления50,6 кДж/моль
Температура кипения2623 K
Теплота испарения383 кДж/моль
Молярный объём12,1 см³/моль
Кристаллическая решётка простого вещества
Структура решёткикубическая, алмазная
Параметры решётки5,4307 Å
Отношение c/a
Температура Дебая625 K
Si14
28,0855
[Ne]3s23p2
Кремний

История

Схема атома кремния

В чистом виде кре́мний был выделен в 1811 году французскими учеными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром.

Происхождение названия

В 1825 году шведский химик Йёнс Якоб Берцелиус действием металлического калия на фтористый кремний SiF4 получил чистый элементарный кремний. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название «кремний» введено в 1834 году российский химиком Германом Ивановичем Гессом. В переводе c греческого kremnos — «утес, гора».

Нахождение в природе

По распространённости в земной коре кремний среди всех элементов занимает второе место (после кислорода). Масса земной коры на 27,6—29,5 % состоит из кремния. Кремний входит в состав нескольких сотен различных природных силикатов и алюмосиликатов. Больше всего распространен кремнезём — многочисленные формы диоксида кремния (IV) SiO2 (речной песок, кварц, кремень и др.), составляющий около 12 % земной коры (по массе). В свободном виде кремний в природе не встречается, хотя одна четвертая земли состоит из кремния.

Получение

В промышленности кремний получают, восстанавливая расплав SiO2 коксом при температуре около 1800 °C в дуговых печах. Чистота полученного таким образом кремния составляет около 99,9 %. Так как для практического использования нужен кремний более высокой чистоты, полученный кремний хлорируют. Образуются соединения состава SiCl4 и SiCl3H. Эти хлориды далее очищают различными способами от примесей и на заключительном этапе восстанавливают чистым водородом. Возможна также очистка кремния за счет предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают летучий моносилан SiH4. Моносилан очищают далее ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C. Содержание примесей в получаемом этими методами кремнии снижается до 10−8-10−6% по массе.

Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым. Крупнейшим производителем кремния в России является ОК Русал — кремний производится на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область).

Физические свойства

Кристаллическая структура кремния.

Кристаллическая решетка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твердость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному излучению, начиная с длины волны 1.1 микрометр.

Схематическое изображение зонной структуры кремния [2]

Электрофизические свойства

Элементарный кремний — типичный непрямозонный полупроводник. Ширина запрещенной зоны при комнатной температуре 1,12 эВ, а при Т = 0 К составляет 1,21 эВ. Концентрация носителей заряда в кремнии с собственной проводимостью при комнатной температуре 1,5·1016м−3. На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нем микропримеси. Для получения монокристаллов кремния с дырочной проводимостью в кремний вводят добавки элементов III-й группы — бора, алюминия, галлия и индия, с электронной проводимостью — добавки элементов V-й группы — фосфора, мышьяка или сурьмы. Электрические свойства кремния можно варьировать, изменяя условия обработки монокристаллов, в частности, обрабатывая поверхность кремния различными химическими агентами.

  1. Диэлектрическая проницаемость: 12
  2. Подвижность электронов: 1300-1400 см²/(в*c).
  3. Подвижность дырок: 500 см²/(в*c).
  4. Ширина запрещенной зоны 1,205-2,84*10(^-4)*T
  5. Продолжительность жизни электрона: 50 — 500 мксек
  6. Длина свободного пробега электрона: 0,1 см
  7. Длина свободного пробега дырки: 0,02 — 0,06 см

Химические свойства

В соединениях кремний склонен проявлять степень окисления +4 или −4, так как для атома кремния более характерно состояние sp³-гибридизации орбиталей. Поэтому во всех соединениях, кроме оксида кремния (II) SiO, кремний четырёхвалентен.

Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. При нагревании до температуры 400—500 °C кремний реагирует с кислородом с образованием диоксида SiO2, с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4.

С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:

Ca2Si + 4HCl → 2CaCl2 + SiH4↑.

Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).

С азотом кремний при температуре около 1000 °C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12. Соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiC (карборунд) характеризуется высокой твердостью и низкой химической активностью. Карборунд широко используется как абразивный материал.

При нагревании кремния с металлами возникают силициды. Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.

При восстановлении SiO2 кремнием при высоких температурах образуется оксид кремния (II) SiO.

Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.

Применение

Микроконтроллер 1993 года с УФ стиранием памяти 62E40 европейской фирмы STMicroelectronics. За окошечком виден кристалл микросхемы — кремниевая подложка с выполненной на ней схемой.

В настоящее время кремний — основной материал для электроники и солнечной энергетики.

Монокристаллический кремний — материал для зеркал газовых лазеров.

Иногда кремний (технической чистоты) и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях.

Соединения металлов с кремнием — силициды, являются широкоупотребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.), а также силициды ряда элементов являются важными термоэлектрическими материалами.

Кремний применяется в металлургии при выплавке чугуна, сталей, бронз, силумина и др. (как раскислитель и модификатор, а также как легирующий компонент).

Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них.

Широко известен силикатный клей, преимущественно применяемый для склеивания бумаги.

Последнее время очень широко применяются полимеры на основе кремния — силиконы.

Биологическая роль

Для некоторых организмов кремний является важным биогеным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной. Мышечная ткань человека содержит (1-2)·10−2% кремния, костная ткань — 17·10−4%, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

Соединения кремния относительно нетоксичны. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, образующихся, например, при взрывных работах, при долблении пород в шахтах, при работе пескоструйных аппаратов и т. д. Микрочастицы SiO2, попавшие в лёгкие, кристаллизуются в них, а возникающие кристаллики разрушают лёгочную ткань и вызывают тяжёлую болезнь — силикоз. Чтобы не допустить попадания в лёгкие опасной пыли, следует использовать для защиты органов дыхания респиратор.

Дополнительная информация

Соединения кремния
Пористый кремний
Кристаллический кремний
Германий
Кремнийорганические соединения

 

 
 

+7 (812)

Телефоны отделов продаж:

337-18-93 - отдел моющих средств и хозтоваров-многоканальный.
337-18-94 - отдел ветзоотехники и агрохимии
337-18-95 - отдел лабораторной посуды
337-18-96 - отдел химии и спецодежды
337-18-97 - отдел лабораторного оборудования и приборов

Адреса электронной почты:

him_spb@mail.ru
himsnab.53@list.ru

Адрес:

198095, г. Санкт-Петербург, ул. Швецова, дом 23 (Здание ТЭМП)

© 2009 — «ХИМСНАБ»
Все права защищены

Отказ от ответственности



Создание сайта — «Consepto»
Продвижение сайта — «1 Место»