Стронций |
|
---|---|
Атомный номер |
38 |
Внешний вид простого вещества |
ковкий, серебристо-белый металл |
Свойства атома | |
Атомная масса (молярная масса) |
87,62 а. е. м. (г/моль) |
Радиус атома |
215 пм |
Энергия ионизации (первый электрон) |
549,0 (5,69) кДж/моль (эВ) |
Электронная конфигурация |
[Kr] 5s2 |
Химические свойства | |
Ковалентный радиус |
191 пм |
Радиус иона |
(+2e) 112 пм |
Электроотрицательность (по Полингу) |
0,95 |
Электродный потенциал |
0 |
Степени окисления |
2 |
Термодинамические свойства простого вещества | |
Плотность |
2,54 г/см³ |
Молярная теплоёмкость |
26,79 Дж/(K·моль) |
Теплопроводность |
(35,4) Вт/(м·K) |
Температура плавления |
1 042 K |
Теплота плавления |
9,20 кДж/моль |
Температура кипения |
1657 K |
Теплота испарения |
144 кДж/моль |
Молярный объём |
33,7 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки |
кубическая гранецентрированая |
Параметры решётки |
6,080 Å |
Отношение c/a | — |
Температура Дебая |
147 K |
Sr | 38 |
87,62 | |
[Kr]5s2 | |
Стронций |
Стронций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.
Содержание в земной коре — 0,384 % в свободном виде стронций не встречается. Он входит в состав около 40 минералов. Из них наиболее важный — целестин SrSO4. Добывают также стронцианит SrCO3. Эти два минерала имеют промышленное значение.
Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%).
В природе стронций встречается в виде смеси 4 стабильных изотопов 84Sr (0,56 %), 86Sr (9,86 %), 87Sr (7,02 %), 88Sr (82,56 %).
Три способа получения металлического стронция:
— термическое разложение некоторых соединений
— электролиз
— восстановление оксида или хлорида
Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.
Электролитическое получение стронция электролизом расплава смеси SrCl2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.
При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.
Стронций — мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.
Полиморфен — известны три его модификации. До 215оС устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605оС — гексагональная (β-Sr), выше 605оС — кубическая объемно-центрированная модификация (γ-Sr).
Температура плавления — 768оС, Температура кипения — 1390оС.
Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.
В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В. Энергично реагирует с водой, образуя гидроксид:
Взаимодействует с кислотами, вытесняет тяжелые металлы из их солей. С концентрированными кислотами (H2SO4, HNO3) реагирует слабо.
Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO2 и нитрид Sr3N2. При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.
Энергично реагирует с неметаллами — серой, фосфором, галогенами. Взаимодействует с водородом (выше 200оС), азотом (выше 400оС). Практически не реагирует с щелочами.
При высоких температурах реагирует с CO2, образуя карбид:
Легкорастворимы соли стронция с анионами Cl-, I-, NO3-. Соли с анионами F-, SO42-, CO32-, PO43- малорастворимы.
Основные области применения стронция и его химических соединений — это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.
Стронций применяется для легирования меди и некоторых ее сплавов, для введения в аккумуляторные свинцовые сплавы, для обессеривания чугуна, меди и сталей.
Стронций чистотой 99,99—99,999 % применяется для восстановления урана.
Магнитотвердые ферриты стронция — широкоупотребительные материалы для производства постоянных магнитов.
В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в кирпично-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.
Радиоактивный 90Sr (период полураспада 28,9 лет) применяется в производстве радиоизотопных источников тока в виде титаната стронция (плотность 4,8 г/см³, а энерговыделение около 0,54 Вт/см³).
Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.
Оксид стронция применяется в качестве компонента сверхпроводящих керамик.
Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с громадной энергоемкостью и энергоплотностью.
Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.
Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция. Изотоп стронция 90Sr является радиоактивным с периодом полураспада 28.9 лет. 90Sr претерпевает β-распад, переходя в радиоактивный 90Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90Sr образуется при ядерных взрывах и выбросах с АЭС. По химическим реакциям радиоактивный и нерадиоактивные изотопы стронция практически не отличаются. Стронций природный — составная часть микроорганизмов, растений и животных. Независимо от пути и ритма поступления в организм растворимые соединения стронция накапливаются в скелете. В мягких тканях задерживается менее 1 %. Путь поступления влияет на величину отложения стронция в скелете. На поведение стронция в организме оказывает влияние вид, пол, возраст, а также беременность, и другие факторы. Например, в скелете мужчин отложения выше, чем в скелете женщин. Стронций является аналогом кальция. Стронций с большой скоростью накапливается в организме детей до четырехлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы. Пути попадания:
Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» — поражение и деформация суставов, задержка роста и другие нарушения Напротив, радиоактивный стронций практически всегда негативно воздействует на организм человека:
Изотоп стронция 90Sr является радиоактивным с периодом полураспада 28,79 лет. 90Sr претерпевает β-распад, переходя в радиоактивный иттрий 90Y (период полураспада 64 часа). 90Sr образуется при ядерных взрывах и выбросах с АЭС.
Стронций является аналогом кальция и способен прочно откладываться в костях. Длительное радиационное воздействие 90Sr и 90Y поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.
Классификация хим. элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона/
IA | IIA | IIIB | IVB | VB | VIB | VIIB | ---- | VIIIB | ---- | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |
Период | ||||||||||||||||||
1 |
1 H Водород |
2 He Гелий |
||||||||||||||||
2 |
3 Li Литий |
4 Be Бериллий |
5 B Бор |
6 C Углерод |
7 N Азот |
8 O Кислород |
9 F Фтор |
10 Ne Неон |
||||||||||
3 |
11 Na Натрий |
12 Mg Магний |
13 Al Алюминий |
14 Si Кремний |
15 P Фосфор |
16 S Сера |
17 Cl Хлор |
18 Ar Аргон |
||||||||||
4 |
19 K Калий |
20 Ca Кальций |
21 Sc Скандий |
22 Ti Титан |
23 V Ванадий |
24 Cr Хром |
25 Mn Марганец |
26 Fe Железо |
27 Co Кобальт |
28 Ni Никель |
29 Cu Медь |
30 Zn Цинк |
31 Ga Галлий |
32 Ge Германий |
33 As Мышьяк |
34 Se Селен |
35 Br Бром |
36 Kr Криптон |
5 |
37 Rb Рубидий |
38 Sr Стронций |
39 Y Иттрий |
40 Zr Цирконий |
41 Nb Ниобий |
42 Mo Молибден |
(43) Tc Технеций |
44 Ru Рутений |
45 Rh Родий |
46 Pd Палладий |
47 Ag Серебро |
48 Cd Кадмий |
49 In Индий |
50 Sn Олово |
51 Sb Сурьма |
52 Te Теллур |
53 I Иод |
54 Xe Ксенон |
6 |
55 Cs Цезий |
56 Ba Барий |
* |
72 Hf Гафний |
73 Ta Тантал |
74 W Вольфрам |
75 Re Рений |
76 Os Осмий |
77 Ir Иридий |
78 Pt Платина |
79 Au Золото |
80 Hg Ртуть |
81 Tl Таллий |
82 Pb Свинец |
83 Bi Висмут |
(84) Po Полоний |
(85) At Астат |
86 Rn Радон |
7 |
87 Fr Франций |
88 Ra Радий |
** |
(104) Rf Резерфордий |
(105) Db Дубний |
(106) Sg Сиборгий |
(107) Bh Борий |
(108) Hs Хассий |
(109) Mt Мейтнерий |
(110) Ds Дармштадтий |
(111) Rg Рентгений |
(112) Cp Коперниций |
(113) Uut Унунтрий |
(114) Uuq Унунквадий |
(115) Uup Унунпентий |
(116) Uuh Унунгексий |
(117) Uus Унунсептий |
(118) Uuo Унуноктий |
8 |
(119) Uue Унуненний |
(120) Ubn Унбинилий |
||||||||||||||||
Лантаноиды * |
57 La Лантан |
58 Ce Церий |
59 Pr Празеодим |
60 Nd Неодим |
(61) Pm Прометий |
62 Sm Самарий |
63 Eu Европий |
64 Gd Гадолиний |
65 Tb Тербий |
66 Dy Диспрозий |
67 Ho Гольмй |
68 Er Эрбий |
69 Tm Тулий |
70 Yb Иттербий |
71 Lu Лютеций |
|||
Актиноиды ** |
89 Ac Актиний |
90 Th Торий |
91 Pa Протактиний |
92 U Уран |
(93) Np Нептуний |
(94) Pu Плутоний |
(95) Am Америций |
(96) Cm Кюрий |
(97) Bk Берклий |
(98) Cf Калифорний |
(99) Es Эйнштейний |
(100) Fm Фермий |
(101) Md Менделевий |
(102) No Нобелей |
(103) Lr Лоуренсий |
Щелочные металлы | Щёлочноземельные металлы | Лантаноиды | Актиноиды | Переходные металлы |
Лёгкие металлы | Полуметаллы | Неметаллы | Галогены | Инертные газы |