Нанотрубки УНТ-волокна Нановолокно новый материал нанотрубки

арамидные волокна, волокно, углеродные нанотрубки электропроводящее волокно из углеродных нанотрубок, которых нет ни у одного другого существующего материала , заявил руководитель научной группы Маттео Пасквали ( Matteo Pasquali ) , профессор химия, химической продукции (продажа химии) и биомолекулярной инженерии… В соответствующей статье, опубликованной на прошлой неделе в Science, авторы приводят описание промышленно масштабируемого процесса производства нитевидного волокна, превосходящего все аналогичные высококачественные материалы, доступные на рынке.

Ученые Университета Райса (Rice University) и компании Teijin Aramid (Нидерланды) при содействии исследовательской лаборатории ВВС США (AFRL) и Технического института Израиля создали новое волокно из углеродных нанотрубок (УНТ), которое с виду похоже на текстильные нити, однако, проводит электрический ток и тепло как металлическая проволока.

Профессор химия, химической продукции

Нановолокно со свойствами, которых нет ни у одного другого существующего материала, – заявил руководитель научной группы Маттео Пасквали (Matteo Pasquali), профессор химия, химической продукции (продажа химии) и биомолекулярной инженерии Университета Райса. Оно выглядит как черные хлопковые нити, но ведет себя при этом как металлическая проволока и как прочные углеродные волокна. Лампа удерживается на месте с помощью двух тонких нитей из углеродного нановолокна.

Металлическая проволока Нанотрубки

Волокно из УНТ проводит тепло и электричество также хорошо, как металлическая проволока, однако, является при этом более прочным и гибким. Теплопроводность волокна из УНТ приблизительно такая же, как у лучших графитовых волокон, однако, его электропроводность в 10 раз выше.

Нанотрубки и Графитовое волокно

Графитовые волокна очень хрупкие, в то время как волокна на основе УНТ очень гибки и упруги, как текстильные нити. Мы ожидаем, что комбинация таких свойств позволит получить новые продукты с уникальными характеристиками на рынках, связанных с аэрокосмической и автомобильной промышленностями, медициной и производством умной одежды. Удивительные свойства углеродных нанотрубок увлекали ученых с момента их открытия в 1991 году. Полые трубки из чистого углерода, которые в диаметре сравнимы со спиралями ДНК, почти в 100 раз прочнее стали при том, что они имеет в 6 раз меньшую плотность. Электро- и теплопроводность волокна на основе УНТ могут соперничать с лучшими металлическими проводниками. Они также могут служить как светочувствительные полупроводники, устройства для доставки лекарств и даже в качестве губок для сбора нефтепродуктов. К сожалению, несмотря на то, что углеродные нанотрубки являются prima donna нанотехнологий, с ними очень непросто работать.

Чтобы создать методы синтеза нанотрубкок, дающие разумные для промышленных применений количества (при разумной цене), ученым и технологам потребовалось почти полтора десятилетия. Обнаружены десятки типов нанотрубок – каждый из которых имеет уникальные свойства, и исследователи до сих пор не нашли способ получения УНТ строго одного типа. Вместо этого практически все методы получения дают смесь из всех типов – сростки наподобие комков из волос.

Прибор по намотке УНТ-волокн

Готовит к использованию прибор по намотке УНТ-волокна. Создание крупных объектов из сростков УНТ является большой проблемой. Нитевидное волокно толщиной примерно ¼ толщины человеческого волоса будет состоять из десятков миллионов нанотрубок, упакованных бок о бок. Нанотрубки будут идеально ровные, как карандаши в коробке, и плотно упакованы. Некоторые лаборатории исследовали прямые способы выращивания таких волокон, однако скорость их производства оказалась достаточно медленной по сравнению с мокрым способом формования, когда сростки нанотрубок диспергируют в жидкости и распыляют через фильеры для формирования нити.

Мокрые способы формования УНТ

Изучать мокрые способы формования УНТ еще под руководством Ричарда Смолли (Richard Smalley, Rice’s Smalley Institute for Nanoscale Science and Technology). Эта работа позволила разработать мокрый способ формования УНТ-волокна, аналогичный промышленному методу получения высокопрочных арамидных волокон – как у компании Teijin’s Twaron – которые используются в пуленепробиваемых жилетах и других продуктах (основным коммерчески успешным продуктом на основе таких волокон является материал Кевлар компании DuPont). Однако, указанный выше способ необходимо было модифицировать: из-за образующихся перекосов миллионов нанотрубок в структуре волокна оно получалось очень непрочным и не проводило электрический ток. Микрофотография SEM волокна, состоящего из плотно упакованных углеродных нанотрубок (в сечении волокна видно лишь несколько пробелов внутри.

Растворитель для УНТ хлорсульфоновую кислоту

Получение очень высокой плотности упаковки и выравнивание УНТ в волокне является критическими факторами, – говорит Йешаяху Талмон (Yeshayahu Talmon), директор Технического института Рассела Берри по нанотехнологиям (Technion’s Russell Berrie Nanotechnology Institute), который начал работать с группой Пасквали около 5 лет назад. Следующий большой прорыв был в 2009 году, когда Талмон, Пасквали и их коллеги подобрали подходящий растворитель для УНТ – хлорсульфоновую кислоту.

Возможность создать высококонцентрированные растворы нанотрубок – разработка, которая привела к возможности плотной упаковки и выравниванию УНТ в структуре волокна. До этого времени никто не думал, что формование в хлорсульфоновой кислоте возможно, так как она реагирует с водой.

Обнаружил аспирант в моей лаборатории, Натнаэль Бахабту (Natnael Bahabtu). Это было переломным моментом в нашем исследовании. Позже было обнаружено, что прочность и проводимость получаемого волокна могут быть улучшены, если исходный материал (сростки нанотрубок) содержит длинные нанотрубки с несколькими атомными дефектами. В 2010 году Пасквали и Талмон начали эксперименты с нанотрубками от различных поставщиков и параллельно сотрудничали с учеными из лаборатории AFRL для измерения электро- и теплопроводности получаемых волокон. В течение того же периода Отто занимался анализом методов получения УНТ-волокна, предлагаемых различными научно-исследовательскими центрами. Он предложил объединить разработки Пасквали и Талмона с ноу-хау компании Teijin’s Twaron по получению арамидного волокна.

В 2010 году был запущен совместный проект Teijin Aramid с Университетом Райса.  Маттео Пасквали (с катушкой волокна на основе УНТ) и его коллеги (слева направо): аспиранты Колин Янг (Colin Young) и Дмитри Центалович (Dmitri Tsentalovich), научный сотрудник Teijin Aramid Рон тер Ваарбик (Ron ter Waarbeek), аспирант Мохаммед Аднан (Mohammed Adnan) // Источник: Университет Райса.

Научно-техническая поддержка

Незамедлительному улучшению прочности и электропроводности нашего волокна, – говорит Пасквали. Соавтор разработки Юникиро Коно (Junichiro Kono), профессор электронного и компьютерного моделирования Университета Райса, говорит: Это исследование показало, что электропроводность волокна может быть настроена и оптимизирована под конкретное применение. Нами была получена самая высокая электропроводность среди всех когда-либо полученных углеродных волокон.

Удельная электропроводность УНТ-волокна, разработанного Пасквали и его коллегами, находится на одном уровне с медью, золотом и алюминием. Однако преимущество нового материала в прочности позволит применить его в тех приложениях, где использование металлических проволок будет невыгодно. В первую очередь это относится к электронике и авиации, где углеродные нити смогут заменить металлические провода, что существенно облегчит и удешевит конструкцию таких приборов. Кроме того, подобные нити могут стать основой для новых сверхпрочных материалов, обладающих высокой гибкостью и теплопроводностью. Металлические провода сломаются при обработке прокатчиком или любым другим видом станков в тех случаях, если они слишком тонкие. Из-за этого мы часто используем относительно толстые металлические провода в электронных приборах, несмотря на то, что в этом нет необходимости.