Нанесение токопроводящего слоя химическим осаждением металлов
химическое серебрение | chemical silvering |
химическое меднение | chemical copper plating |
Химическое серебрение не проводящих ток материалов | Chemical silvering of non-conductive materials |
Химическое серебрение основано на восстановлении металла из водных растворов его солей, в основном, из раствора его комплексной аммонийной соли . Для восстановления пользуются слабым восстановителем – формальдегидом или соединениями, содержащими альдегидную группу, глюкозой, инвертным сахаром и другими моносахаридами, сегнетовой солью, пирогаллолом.
Если к серебрильному раствору добавить в качестве восстановителя формалин, то реакцию восстановления записывают в виде:
В случае применения в качестве восстановителя глюкозы реакция идет:
Восстанавливаемое серебро только частично оседает на поверхности матрицы и на стенках сосуда, образуя плотную зеркальную пленку, остальное серебро выделяется в объеме раствора в виде мелких кристалликов, которые постепенно оседают на дно.
Для получения плотной пленки надо, чтобы реакция восстановления серебра на поверхности серебримого изделия протекала с небольшой скоростью, соизмеримой со скоростью подвода, за счет диффузии из объема раствора, к серебримой поверхности ионов серебра и восстановителя, а процесс образования серебряного порошка в объеме раствора протекал возможно медленнее, так как в противном случае наступившее обеднение раствора может помешать образованию плотной пленки.
Замедление реакции восстановления серебра достигается применением его комплексной соли, применением слабых восстановителей, подбором оптимальной концентрации их и понижением температуры раствора.
Благоприятным условием, стимулирующим образование пленки серебра на поверхности матрицы, является наличие активных точек, могущих стать центрами кристаллизации. С целью активирования поверхности её обрабатывают специальными сенсибилизирующими растворами.
Для нанесения серебряного слоя большое значение имеет подготовка поверхности. Обычно поверхность пластмассовой матрицы обрабатывается в растворе . Этот процесс называется сенсибилизация. Образующийся гидрозоль гидроокиси олова при соприкосновении с твердой поверхностью покрываемого изделия быстро превращается в хорошо пристающий гидрогель. Последний действует каталитически на процесс осаждения металла и его кристаллизацию на твердой поверхности и прочное приставание к ней.
Тщательно промыть их поверхность с помощью щетки меловой кашицей, содержащей щелочь, до тех пор пока она не будет равномерно смачиваться водой. | |
Сенсибилизировать матрицы в растворе в в течение 2 мин. | |
Промыть в дистиллированной воде. |
Еще влажную матрицу подвергают серебрению, окуная в раствор серебра или распыляя его. Признаком окончания процесса служат появление на поверхности жидкости пленки или лепестков, состоящих из кристалликов серебра. Матрицу извлекают из раствора, ополаскивают дистиллированной водой, промывают водопроводной.
Серебрение требует меньше времени, чем графитирование. Медь, осаждаемая на серебряном слое, имеет во всех точках своей поверхности однородную структуру, что во время печатания способствует одинаковому и равномерному приему и отдаче краски и улучшает качество печати.
Химическое осаждение меди производят из щелочных растворов ее комплексных солей, действуя на них слабыми восстановителями: формальдегидом, фенилгидразином.
Подготовка пластмассовых изделий к химическому меднению включает операции:
Промыть в дистиллированной воде | |
сенсибилизация в растворе активирование поверхности путем обработки в разбавленном растворе солей благородных металлов. |
Медь осаждается на поверхности изделий и прочно пристает к ней в том случае, если она предварительно была обработана однимиз следующих составов:
0,3 % хлороплатиновой кислоты | 0.3% chloroplatinic acid |
0,1 % хлористого азота | 0.1% nitrogen chloride |
10 % азотнокислого серебра – используется чаще всего | 10% silver nitrate - used most often |
Активирование производят следующим образом: матрицу, промытую после сенсибилизации в растворе , погружают в активирующий раствор на несколько минут, затем извлекают и, не промывая, сушат при 40оС
Предложено много разных способов меднения. Практическое значение имеет следующий состав:
В качестве восстановителя применяют 40 %-ный раствор формалина. На 1 л раствора требуется 150 мл формалина. Процесс идет при комнатной температуре. За 10 мин осаждается пленка толщиной 1 мкм.
В гальванотехнике медь широко применяется в основном как подслой при многослойном защитно-декоративном покрытии на изделиях из стали, цинка, цинковых и алюминиевых сплавов, перед нанесением никелевого, хромового и других видов покрытий. Пластичность, хорошее сцепление, низкая пористость первого медного слоя позволяют улучшить коррозионную стойкость покрытий и снизить толщину слоев более дефицитных металлов.
Для защиты от коррозии стали в атмосферных условиях медные покрытия небольшой толщины непригодны. Потенциал меди более электроположителен (стандартный потенциал меди равен ЕCu/Cu2+ = +0,34 В), чем потенциал железа, и в порах основной металл будет разрушаться быстрее в результате образования гальванических пар. Кроме того, медь легко окисляется, реагируя с влагой и диоксидом углерода воздуха, покрывается оксидами и темнеет. При длительном воздействии воздуха медь покрывается так называемой патиной – зеленым налетом карбонатов. Тем не менее, в последние годы медь все шире используется как самостоятельное функциональное покрытие. Прежде всего, это связано с применением меди в электронной и приборостроительной промышленности (например, для производства печатных плат и др.), как защитного слоя при избирательной цементации изделий, а также как декоративного покрытия с последующим оксидированием или окрашиванием. Толстые медные покрытия используются также в гальванопластике для изготовления металлических копий.
В полиграфии электролитическое осаждение меди применяется во многих технологических процессах изготовления печатных форм:
Электролиты меднения можно разделить на две основные группы: простые кислые (сернокислые, борфтористоводородные) и сложные комплексные (цианидные). В последних медь находится в виде отрицательно или положительно заряженных комплексных ионов.
Кислые электролиты просты и устойчивы по составу, позволяют работать при высоких плотностях тока, особенно при повышенной температуре, и перемешивании сжатым воздухом. Медь выделяется на катоде в результате разряда простых, главным образом, двухвалентных ионов при положительных значениях потенциалов, мало изменяющихся с повышением плотности тока. Поэтому осадки меди из кислых электролитов грубее по структуре, чем из цианидных, однако они достаточно плотны и выделяются с высоким, почти 100%-ным выходом по току в интервале рабочих плотностей тока. Наибольшее распространение получили сернокислые электролиты.
Недостатками кислых электролитов являются плохая рассеивающая способность и невозможность непосредственного меднения стали, цинковых сплавов и других металлов с более электроотрицательным потенциалом, чем медь. При погружении в кислый электролит эти металлы вытесняют медь: она осаждается в виде пористого, плохо сцепленного с основой иногда рыхлого (на цинке) осадка. По этой причине перед меднением из кислых электролитов на поверхность стальных изделий предварительно наносят тонкий (3 мкм) слой меди из цианидных растворов или никеля из обычного кислого электролита.
Электролит сернокислых ванн представляет собой водный раствор сернокислой меди и серной кислоты. Например, в медной гальванопластике часто применяют ванны, содержащие в 1 л раствора 150–250 г и 5–85 г серной кислоты. В отдельных случаях к ним добавляют органические вещества, которые влияют специфически, улучшая некоторые свойства осадков: увеличивают твердость (желатин, декстрин, этиловый спирт, фенол), содействуют образованию блестящих осадков (патока, тиомочевина ).
В составе медной сернокислой ванны кроме сернокислой меди должна быть серная кислота для того, чтобы предотвратить гидролиз и избежать образования хрупких осадков, для повышения электропроводности раствора – это улучшает рассеивающую способность ванны и уменьшает напряжение, нужное для создания элекролизующего тока, повышает ионную силу раствора и тем самым снижает активность ионов меди, что способствует получению мелкокристаллических осадков.
В присутствии серной кислоты растворимость уменьшается, поэтому в составе медных кислых ванн подбирают такие соотношения этих двух компонентов, при которых концентрация , оставаясь сравнительно высокой, позволяет применять большие плотности тока. Кислотность в разных типах ванн варьируют от 5 до 85 г/л . Соответственно максимальную концентрацию можно выбирать в пределах от 349 до 277 г/л при 25оС. Но на практике работают с растворами, ненасыщенными , потому что в насыщенных растворах аноды покрываются коркой кристаллов , которые резко повышают переходное сопротивление на границе анод – электролит. В основном концентрации в расчете на находятся в пределах 150–300 г/л. В перемешиваемых ваннах концентрация при той же плотности тока может быть ниже по сравнению со «спокойными» ваннами, т.к. движение жидкости уменьшает обеднение прикатодного слоя электролита. Так, например, ванна для наращивания меди на вращающихся цилиндрах глубокой печати содержит в 1 л больше кислоты и меньше , чем «спокойные» ванны.
Повышение температуры увеличивает растворимость медной соли и позволяет работать с высококонцентрированными растворами при повышенных плотностях тока. Однако при охлаждении ванны ниже температуры насыщения выпадают кристаллы, что осложняет дальнейшую эксплуатацию ванны. Повышение температуры благоприятствует интенсификации электролиза также и благодаря тому, что увеличивает электропроводность электролита, в связи с чем при неизменном напряжении через ванну может пройти больший ток.
В табл.1 приведены составы медных сернокислых ванн и режимы эксплуатации. Для гальваностереотипии нашли применение две ванны: «медленная» – для затяжки матриц по проводящему слою и «быстрая» – для наращивания основной массы металла гальваноотложения.
«Затяжка», т.е. покрытие матриц по проводящему или разделительному слою, проводится при небольших плотностях тока, комнатной температуре и без перемешивания. Такой режим электролиза нужен для того, чтобы предохранить проводящие или разделительные слои от повреждения при первичном покрытии и получить равномерное покрытие по всей поверхности матрицы. Поэтому в Ванне высокое содержание серной кислоты необязательно.
В тех случаях, когда первичному покрытию подлежат матрицы из пластических не проводящих ток материалов с проводящим слоем, нанесенным путем химического осаждения меди или серебра, или металлические матрицы с оксидными разделительными слоями, также желательна низкая концентрация серной Кислоты, которая может химически взаимодействовать со слоями. Этим требованиям отвечает концентрация , равная 25–30 г/л.
Однако электролитическая медь, получаемая при низких плотностях тока, отличается недостаточной механической прочностью. Поэтому дальнейшее наращивание слоя после «затяжки» следует проводить в «скорой» ванне при более высоких плотностях тока, обеспечивающих образование осадков с более мелкой кристаллической структурой и, следовательно, более высокими механическими свойствами. Поэтому раствор «скорой» ванны должен быть более концентрированным.
При выборе состава ванны и режима электролиза исходили также из требований, предъявляемых к структуре гальваноотложения. Медь для форм глубокой печати должна обладать мелкозернистой и весьма равномерной кристаллической структурой, позволяющей проводить процесс травления хлорным железом, диффундирующим через желатиновую пленку фотографической копии.
Для того, чтобы получать блестящие гальваноотложения на цилиндрах глубокой печати, не требующих продолжительного механического полирования, в состав ванн вводят блескообразователи – тиомочевину и 2,6 и 2,7-нафталинсульфокислоту в виде натриевой соли.
Обычно плотность тока при комнатной температуре и концентрации от 150 до 250 г/л и от 30 до 50 г/л составляет 1–2 А/дм2. В этих же ваннах при подогреве до 40оС плотность тока может быть повышена до 4 А/дм2. Перемешивание позволяет повысить еще – до 8–12 А/дм2. Однако интенсивные режимы связаны с обильным образованием дендритов, которые затем осыпаются с осадка, и из-за чего фактический выход металла резко снижается, что делает невыгодным подобную интенсификацию процесса.
Кристаллическая структура осадков зависит от условий электролиза. С повышением плотности тока осадок меди становится более мелкозернистым, более эластичным и прочным. Поэтому для осаждения меди на формных цилиндрах глубокой печати, где требуется медь исключительно равномерной и мелкозернистой структуры, температуру электролита поддерживают не выше 16–25оС.
Для улучшения качества осадков к медным электролитам иногда добавляют органические вещества, различные по химическому строению и происхождению. Их добавки увеличивают твердость осадков, улучшают их структуру, а не которые влияют также на текстуру и придают осадкам блеск. Однако чрезмерная концентрация в электролите органических добавок может и ухудшить осадки, деформировать их, повысить внутренние напряжения и придать им хрупкость.
Наиболее безопасной добавкой является этиловый спирт. Он улучшает кристаллическую структуру осадков, расширяет рабочие интервалы плотности тока и не влияет отрицательно на механические свойства. Добавка спирта до 10 г/л позволяет увеличить плотность тока до 25 А/дм2 при повшении температуры до 35–38оС. медь, осажденная в электролите с примесью спирта имеет предел прочности 37–38 кг/мм2 – более высокий, чем у меди, осажденной в ваннах без добавки – 21–28 кг/мм2.
Желатин придает поверхности гладкость, увеличивает твердость осадков и облегчает их отделение от гальваностереотипных матриц. Концентрация желатина не должна превышать 0,2 г/л.
Фенол и его производные при концентрации до 2 г/л расширяют рабочий интервал ванны, увеличивают твердость осадков, уменьшают размеры и количество дендритов. В их присутствии удается увеличить плотность тока до 20 А/дм2 при условии повышения температуры до 40оС, интенсивном перемешивании и постоянном фильтрованию.
Существенным недостатком всех ванн, имеющих в своем составе органические добавки, является их нестойкий эксплутационный режим. Добавки постепенно выделяются из раствора, адсорбируясь на кристаллах осадка, однако по мере уменьшения их концентрации уменьшается их специфическое влияние. Кроме того, некоторые добавки со временем окисляются и изменяют свою химическую природу и свойства. Так, например, легко окисляется натриевая соль дисульфонафталиновой кислоты. Одним из промежуточных продуктов ее окисления является фталевая кислота, которая резко ухудшает качество осажденной меди.
Накопление органических добавок и случайных примесей может вызвать хрупкость металлоотложений, повышенные внутренние напряжения.
Изготовление гальваностереотипных форм электролитическим осаждением меди из сернокислых ванн
Для изготовления гальваностереотипов медь осаждают на различных матрицах. Толщина медного осадка для текстовых и иллюстрационных форм должна быть 0,3±0,05 мм; для табличных форм, имеющих много пробелов, 0,5±0,05 мм. Подготовленную матрицу помещают в «медленную» ванну на 1 ч для «затягивания», т.е. образования медного слоя толщиной 0,02–0,03 мм. Затем матрицу переносят в «ускоренную» ванну, где она покрывается от 5 до 8ч в зависимости от нужной толщины. Сразу покрывать матрицу в «ускоренной» ванне не рекомендуется, т.к. возле электрического контакта образуется осадок – хрупкая, темная, «горелая» медь, а в других частях поверхности остаются непокрытые места.
Значительно лучше проходит осаждение меди на пластмассовых матрицах, покрытых металлическими проводящими слоями, например, серебром. Их высокая электропроводность позволяет меди одновременно и равномерно осаждаться на всей поверхности.
Однако и в этих случаях «затягивание» матриц рекомендуют проводить в «медленных» ваннах при слабой плотности тока. Первичное покрытие при неинтенсивном режиме предотвратит разрушение проводящего слоя возле контакта в начале электролиза и обеспечит эластичность электроосажденного металла, в нем не должно быть внутренних напряжений, которые могут изогнуть и оторвать пленку от матрицы.
С этой целью в ванны для «затягивания» добавляют этиловый спирт или сегнетову соль .
Перед постановкой в «медленную» ванну надо смочить матрицу 50 %-ным водным раствором этилового спирта или смесью электролита ванны со спиртом в отношении 1:1. Для смачивания пользуются разными приемами: окунание, обливание, пульверизация. Важно, чтобы были увлажнены все углубленные участки поверхности матрицы, иначе электролит ванны не сможет вытеснить в отдельных местах из углублений воздух и гальваноотложение получится некачественным – с дырами.
По окончании электролиза матрицы вынимают из ванны, промывают с помощью щетки водопроводной водой и снимают с них отложения. Для этого матрицу освобождают от контактов и со всех сторон обрубают утолщенные и загнутые края отложения.
От пластмассовых матриц отложения отделяются легко, от восковых – при слабом подогреве.
Наращивание меди на поверхность печатных цилиндров машин глубокой печати
Подготовка формных цилиндров в глубокой печати
В качестве формного материала для изготовления форм глубокой печати применяют только электролитическую медь, наращиваемую на формные цилиндры. Последние входят в комплект печатной машины и используются практически неограниченное количество раз. Масса формных цилиндров достигает нескольких сотен килограмм, поэтому они транспортируются только с помощью специальных устройств.
Процесс подготовки формных цилиндров производится по одной технологии для всех способов изготовления печатных форм. Подготовка новых формных цилиндров происходит в течение нескольких суток.
На поверхность печатных цилиндров медь наращивают в двух случаях:
В обоих случаях медь наращивают на цилиндры, непрерывно вращающиеся в ванне. При этом оси цилиндров должны быть параллельны поверхности электролита, у углубление цилиндра в электролит составлять 1/3 диаметра.
На гладкой поверхности стального цилиндра нарезают рваную резьбу (для более прочного сцепления) и после химической обработки (обезжиривания и декапирования) осаждают в гальванической ванне тонкий (5–10 мкм) подслой никеля. В кислых ваннах медь не пристает к железу, поэтому стальной цилиндр перед меднением покрывают слоем никеля. После никелирования цилиндр наращивают медью в специальной ванне при режиме:
Аноды помещают в матерчатые мешки – диафрагмы. Непрерывно наращивают слой меди толщиной 1,2–1,5 мм. На это требуется 26–33 ч. Далее опять вынимают цилиндр, производят чистовую проточку, шлифование и окончательно наращивают 0,15–0,2 мм меди. Полученный основной слой уплотняют с помощью прикатного ролика. После этого медь полируют до зеркального блеска.
Процесс наращивания основного слоя неоднократно прерывают для механической обработки поверхности с целью сохранения цилиндрической формы получаемого отложения.
После осаждения основного слоя меди его тщательно полируют на механическом станке и химическим способом осаждают на его поверхности тончайший (менее 1 мкм) слой серебра.
Затем на этот слой электрохимическим способом наращивают тонкий (0,1–0,12 мм) рабочий слой меди с последующим его полированием. Осаждение продолжается 2,5–3 ч. После 0,5–1 ч электролиза для уплотнения осадка применяют прикатной ролик.
Металл тиражных рубашек должен иметь исключительно равномерную мелкокристаллическую структуру, т.к. только при этом условии обеспечивается высокое качество печатающих элементов, получаемых путем травления рубашки хлорным железом.
Подготовка цилиндров, бывших в употреблении занимает в несколько раз меньше времени. Она заключается в отделении старого медного рабочего слоя, обезжиривании основного слоя, его серебрении и наращивании рабочего слоя с последующим полированием. Электролитические процессы проводятся в автоматизированных гальванических ваннах при непрерывном вращении цилиндров и их полном погружении в электролит. Введение в электролит органических добавок позволяет получать блестящие медные покрытия, не требующие механической полировки или значительно ее сокращающие.
В полиграфии применяются два способа изготовления биметаллических офсетных печатных форм.
В одном из них, названным способом «саксонской пластины», формы изготавливают на листах хромированной электролитической медной фольги, полученной электроосаждением на вращающемся цилиндрическом катоде аналогично изготовлению тиражной рубашки на цилиндрах глубокой печати. Отличительным является то, что медная рубашка, наращенная на цилиндр, покрывается еще затем слоем хрома, служащим для создания пробельных элементов. С этой целью цилиндр после извлечения из медной ванны переносится в хромировочную. Затем рубашка отделяется от цилиндра в виде листа.
Хромированная поверхность листа служит для изготовления печатной формы по способу позитивного копирования. На печатающих элементах хром удаляют химическим травлением, обнажая медь, пробельные элементы образует оставшееся хромовое покрытие.
Технологический процесс изготовления «саксонских» пластин отличается от наращивания рубашки только в некоторых деталях. Толщина медного листа должна быть 0,15–0,2 мм. Поверхность должна быть не полированная, а матовая, мелкозернистая, поэтому за 0,5 ч до окончания электролиза подымают прикатной ролик, чтобы не мешать свободному росту кристаллов. К структуре осадка не предъявляют такие жесткие требования, как к осадку медной рубашки. Поэтому с целью ускорения процесса повышают температуру электролита для возможно применения высокой плотности тока.
По другому способу основой для офсетных печатных форм служат алюминиевые листы, покрытые электролитической медью и никелем. Покрытие алюминиевых листов производится в сернокислой медной ванне:
Листы помещают в ванну при пониженной плотности тока 0,2–0,3 А/дм2. Для прочного сцепления медного осадка с поверхностью алюминиевого листа последний предварительно покрывается оксидной пленкой путем анодного оксидирования. Оксидная пленка, химически стойкая в растворе медной ванны, предохраняет алюминиевый лист от взаимодействия с раствором.
Так как пленка имеет пористую структуру, то при электролизе осаждение меди начинается в порах пленки, благодаря чему весь медный осадок прочно скрепляется с ней, он как бы вырастает из пор оксидной пленки. Медная пленка наращивается до 20 мкм. Она служит для образования печатающих элементов. С целью образования пробельных элементов соответствующие участки должны быть покрыты никелем. Для изготовления формы пользуются позитивным копированием.
Гальванические добавки (galvanic additives) — используют для создания защитного гальванического слоя который не окисляется и не ржавеет, что позволяет значительно продлить срок службы металлических изделий. Современная химическая продукция в каталоге ХИМСНАБ-СПБ: химикаты, вещества и композиции используемые для процессов нанесения гальванических покрытий используемых в производстве и химической промышленности.
Предствленная информация на страницах данного интернет-сайта и в каталоге продукции носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 (2) Гражданского кодекса РФ. Для получения подробной информации о наличии и стоимости указанных товаров и (или) услуг,обращайтесь к менеджерам отдела продаж: форма обратной связи, e-mail, телефон.
Реализация продукции для сельского хозяйства, химической, строительной, нефтегазовой, металлургической, текстильной, кожевенной, и других отраслей промышленности.
Предлагаем широкие возможности для комплектации химической продукцией производства и исследовательских лабораторий в различных отраслях промышленности.
Поставка химической продукции и лабораторного оборудования является ключевым направлением деятельности компании с 1996 года.
Компания «ХИМСНАБ-СПБ» успешно осуществляет поставку широкого спектра лабороторного оборудования, приборов и другой химической продукции на рынке Северо-Запада Российской Федерации.