Нестехиометричные полиэлектролитные комплексы, реакции образования, изменение состава макромолекулярных соединений

Изучение реакций с участием НПЭК, сопровождающихся изменением состава этих растворимых макромолекулярных соединений.

Ранее рассмотрены строение и свойства водорастворимых нестехиометричных полиэлектролитных комплексов (НПЭК) — продуктов завершенных реакций между противоположно заряженными полиэлектролитами. Предпринятое в работе [3] изучение растворов НПЭК методом светорассеяния показало, что макромолекулярные характеристики частиц НПЭК не зависят от способа получения. Это привело к представлению о НПЭК, как о новых макромолекулярных соединениях. Такие соединения относятся к классу полиэлектролитов и являются равновесными системами.

Седиментационный анализ

Наиболее простой и общий способ получения НПЭК состоит в непосредственном смешении растворов полиэлектролитов в той области рН, где они оба полностью заряжены, в присутствии небольших количеств низкомолекулярного электролита. Эту реакцию схематически можно изобразить следующим образом: Существенно, что равновесие реакции (1) в этих условиях полностью смещено вправо. Многочисленные данные седиментационного анализа, полученные для различных НПЭК, свидетельствуют об отсутствии в их растворах как свободного ЛПЭ, так и БПЭ.

Вработе [7] с помощью сканирующей центрифуги показано, что в растворах НПЭК, Рис. 1. Седиментограммы смесей IlMANa - ПВП (а) и ПДМАЭМА - ПФ (б), а: ф= =0,45 (1) 0,33 (2), 0,2 (5), IIMANa (4), ПВП (5); рН 7,5; время 90 мин; [NaCl] = =0,05 моль/л; б: ф=0,33 (1), 0,2 (2), 0,1 (3),_ПДМАЭМА (4), ПФ (5); рН 4,0; время 60 мин; [NaClJ =0,1 моль/л. Мю пф=1,7-10 Мт пдмаэма-нс1=6,3-105; скорость вращения ротора 5,6-Ю4 об/мин; 20° Рис. 2.

Седиментограммы НПЭК nMANa - ПВП, nMANa и их смеси: nMANa (1); НПЭК (ф=0,45) (2); смесь [(1) + (2)] (3); НПЭК (ср=0,23) (4). Условия те же, что на рис. 1, а образованных nMANa (ЛПЭ) и ПВП (БПЭ), отсутствует свободный ПВП. Тем не менее в результате реакции (1) устанавливается некоторое равновесное равномерное распределение относительно коротких цепочек БПЭ среди длинных цепей ЛПЭ. Об этом свидетельствует вид седиментограмм растворов НПЭК различного состава φ =[БПЭ] : [ЛПЭ] [БПЭ] и [ЛПЭ] — концентрации звеньев соответствующих полиэлектролитов в частицах НПЭК).

На рис. 1 приведены седиментограммы НПЭК nMANa — ПВП (здесь и в дальнейшем первым из полиэлектролитов в паре, образующей НПЭК, указывается ЛПЭ), а также НПЭК солянокислый поли-NN'-диметиламиноэтилметакрилат (ПДМАЭМА-НС1) — полифосфат (ПФ) различного состава.

Седиментограммы характеризуются наличием единственного пика, отвечающего НПЭК. Пик достаточно узок и симметричен, а коэффициент седиментации НПЭК монотонно растет при обогащении НПЭК блокирующим полиэлектролитом, т. е. при возрастании <р. Замечательно, что установление равновесного распределения в таких системах достигается быстро. Во всяком случае, настолько быстро, что визуально не удается наблюдать хотя бы временного помутнения раствора ЛПЭ при добавлении к нему раствора БПЭ, если результирующий валовой состав НПЭК заметно отличается от характеристического, т. е. φ< φ харР. Величина φхар совпадает с максимальным значением φ, при котором НПЭК еще сохраняет растворимость. Если бы равновесное распределение достигалось в течение длительного времени, при таком способе приготовления НПЭК вследствие неизбежных локальных пресыщений должны были образовываться частицы ПЭК, имеющие состав ф>фхар.

ПЭК не способны растворяться и должны выделяться из раствора [1—3]. Установление равномерного распределения предполагает перенос цепей БПЭ из частиц НПЭК, обогащенных этим компонентом, на частицы НПЭК, в которых он содержится в недостаточном количестве. Рис. 3. Седиментограммы НПЭК IIMANa - ПВП и их смеси: НПЭК (ф= =0,45) (1); НПЭК (ф=0,2) (2); смесь [(1) + (2)] (5); НПЭК (ф=0,33) (4). Условия те же, что на рис. 1, а Рис. 4. Седиментограммы НПЭК nMANa - ПВП, «сшитых» НПЭК * в их смесях с nMANa: НПЭК (ф=0,45) (1); nMANa (2); смесь НПЭК ((0=0,45) +nMANa (3); смесь НПЭК* (ф=0,45)+nMANa (4). Условия те же, что на рис. 1, о, nMANa=0,35 вес.%

Данный процесс можно осуществить специально. Так, нами изучена реакция, протекающая между НПЭК и свободным ЛПЭ. Результаты седиментационных исследований свидетельствуют о том, что происходит перенос макромолекул БПЭ из НПЭК на свободные полиионы ЛПЭ и в результате образуется новый НПЭК, состав которого совпадает f составом результирующей смеси полиэлектролитов. В качестве объектов такого исследования выбраны НПЭК IlMANa — ПВП состава φ =0,45 и ЛПЭ IIMANa. Смешивали равные объемы растворов НПЭК и ЛПЭ, содержащих одинаковые количества nMANa, так что в результате реакции (2) должен был образовываться НПЭК состава φ=0,23.

На рис. 2 приведены седиментограммы ЛПЭ, НПЭК (φ =0,45), раствора смеси НПЭК (φ =0,45) и ЛПЭ, а также НПЭК (φ =0,23), полученного специально путем смешения соответствующих количеств растворов ЛПЭ и БПЭ в кислых средах с последующим переводом системы в растворимое состояние введением щелочи до рН 7,5. Из сопоставления седиментограмм следует, что в растворе смеси НПЭК и ЛПЭ обнаруживается единственный компонент НПЭК*, коэффициент седиментации которого 5снпэк=4,0 оказывается больше 5сВпэ=1,6 и 5сЛпэ=3,1 и меньше 5С нпэк=7,0. Это объясняется протеканием реакции (2), которая приводит к образованию нового НПЭК, состав которого отличается от φ=0,45. Сравнение седиментограмм показывает, что коэффициент седиментации вновь образовавшегося НПЭК* такой же, как для полученного специально ЛПЭК (φ =0,23), совпадают также площади пиков этих двух седиментограмм (концентрация ЛПЭ в этих растворах одна и та же). Последнее убедительно свидетельствует о том, что реакция (2) полностью завершается. Вполне аналогичные явления наблюдаются и при смешении растворов НПЭК, образованных одной и той же парой полиэлектролитов, но имеющих разные составы.

Реакция НПЭК nMANa — ПВП составов φ =0,45 и φ =0,2

Реакция между НПЭК nMANa — ПВП составов φ =0,45 и φ =0,2. На рис. 3 приведены седиментограммы исходных НПЭК состава φ =0,45 и φ =0,2, смеси равных количеств этих растворов, содержащих ЛПЭ в одинаковых концентрациях, а также раствора НПЭК состава φ =0,33, полученного смешением полимерных реагентов в кислых средах с последующим переводом системы в растворимое состояние введением NaOH. НПЭК получены из тех же полиэлектролитов nMANa и ПВП, что и использованные в предыдущих опытах. Из сравнения седиментограмм, приведенных на рис. 3, следует, что в смеси НПЭК протекает реакция Единственный компонент на седиментограмме смеси характеризуется значением 5сНпэк, удовлетворяющим соотношению 5снпэк(φ=0,2)< <5сНпэк<5снпэк(φ=0,45) и 5снпэк,нпэк (φ=0,33). Площади пиков седиментограмм (3) и (4) на рис. 3 совпадают, что свидетельствует об исчерпывающем протекании реакции (3). Итак, рассмотренные выше реакции (1), (2) и (3) приводят к возникновению НПЭК, характеризующихся равномерным распределением цепочек БПЭ по частицам НПЭК, состав которых совпадает с результирующим составом смеси полиэлектролитов.

Это существенно отличает изученные нами реакции от реакции между линейными полиэлектролитами и глобулярными белками [9—11], а также от реакций между полиметакриловой кислотой и полиэтиленгликолем или поли-NN-винилпирролидоном [12], в которых ярко проявляются явления диспропорционирования, т. е. существенно неравномерного распределения одного из макромолекулярных компонентов среди частиц соответствующих поликомплексов. Специальный интерес представляет изучение механизма переноса цепей БПЭ с одних цепей ЛПЭ на другие.

Свободные полиэлектролиты, перенос цепочек БПЭ из одних частиц НПЭК на другие стадию диссоциации НПЭК

В растворах исследованных НПЭК не удается обнаружить свободные полиэлектролиты, при рассмотрении переноса цепочек БПЭ из одних частиц НПЭК на другие стадию диссоциации НПЭК по-видимому, следует исключить. Альтернативный механизм реакции должен предполагать возникновение промежуточных продуктов, образующихся в результате ассоциации макромолекулярных реагентов, например реакции (2). Это можно проиллюстрировать следующей схемой: Этот механизм широко распространен для различных макромолекулярных систем. Ранее представление об образовании промежуточных соединений, обозначенных нами как ассоциированные поликомплексы (АНПЭК), было использовано при анализе межмакромолекулярных реакций замещения полиэтиленгликоля поли-NN-винилпирролидоном в стехиометричных поликомплексах, образованных полиметакриловой кислотой с первым из них [13, 14]. 

Данный механизм, по-видимому, лежит в основе конкурентной адсорбции макромолекул на межфазных границах [15]. В изученных нами реакциях возникновение промежуточных АНПЭК оказывается возможным благодаря наличию дефектов в структуре ПЭК.

Такие дефекты могут быть представлены в виде петель, составленных из последовательностей разобщенных звеньев обоих полиэлектролитов, образующих ПЭК. Эти дефекты и могут служить участками, которые способны взаимодействовать либо с другими частицами НПЭК, либо с полиионами свободного ЛПЭ, как показано на схеме (5). Существенно, что размер дефектов и их количество возрастают по мере увеличения концентрации в окружающей среде низкомолекулярных солей [16]. В то же время соли экранируют электростатическое отталкивание между одноименно заряженными реагирующими частицами, знак заряда которых определяется зарядом ЛПЭ, а величина заряда составом реагирующих частиц; этим объясняется необходимость введения в реакционные системы низкомолекулярных солей [3—7].

Данные реакции протекают с высокими скоростями. На высокие скорости молекулярных реакций замещения указывается в работе [17], в которой изучена радикальная матричная полимеризация метакриловой кислоты в присутствии поликомплекса, образованного полиакриловой кислотой и полиэтиленгликолем. Замещение полиакриловой кислоты в этом комплексе на полиметакриловую кислоту осуществляется за времена, сравнимые с временем прорастания цепи, которое в изученных условиях не превышает 1 с. Авторы работы [18] исследовали кинетику межмакромолекулярных реакций обмена, подобных рассматриваемым в данной работе, но протекающих в поликомплексах, стабилизированных водородными связями. Они показали, что реакции «обмена» меченных люминесцентной меткой и обычных макромолекул полиакриловой или полиметакриловой кислот в поликомплексах, образованных этими поликислотами и высокомолекулярными полиэтиленгликолем или поли-1М-винилпирролидоном, также протекают с высокими скоростями. По-видимому, именно высокие скорости протекания реакций в растворах НПЭК — причина того, что нам не удалось методом седиментации обнаружить в реакционных смесях промежуточных продуктов — АНПЭК. Важную информацию о механизме межмакромолекулярных реакций можно получить при изучении систем, содержащих водорастворимые «сшитые» НПЭК.

Модифицированные НПЭК

Синтезированы модифицированные НПЭК*, в которых часть солевых межмакромолекулярных связей заменена на ковалентные, не способные в отличие от первых обратимо диссоциировать. НПЭК* приготавливали из nMANa и МПВП, 45% звеньев которого кватернизировали этиленбромгидрином, а остальные звенья затем исчерпывающе алкилировали бромистым этилом. При введении в растворы НПЭК nMANa — МПВП карбодиимида происходит конденсация групп — СОО- полиметакриловой кислоты и ОН-групп МПВП [19, 20] Выход в реакции (6) специально не контролировали, убеждались только в том, что ковалентные связи образуются и количество их достаточно, чтобы все цепочки БПЭ были необратимо связаны с цепями ЛПЭ. Об этом свидетельствуют результаты изучения НПЭК* в водных средах, содержащих большие количества низкомолекулярных солей. Так, НПЭК* не диссоциировали на отдельные компоненты даже при концентрации NaBr в растворе более 2 моль/л, в то время как соответствующие НПЭК nMANa — ПВП начинали распадаться уже при введении в их водные растворы 0,4 моль/л NaBr.

Поведение смешанных систем, аналогичных описанным выше, но отличающихся тем, что в качестве одного из макромолекулярных компонентов выбран модифицированный НПЭК*. На рис. 4 приведены седиментограммы раствора НПЭК nMANa — ПВП состава φ =0,45 (1), свободного ЛПЭ nMANa (5), их смеси, а также смеси НПЭК* того же состава ф=0,45 и nMANa (4). Смеси приготавливали из равных количеств соответствующих растворов, концентрация nMANa в которых одинакова. Поведение смеси (3) разумно описывается в предположении, что между компонентами протекает реакция (2), в результате которой образуется новый НПЭК состава ср=0,23. Иначе выглядит седиментограмма (4), на которой обнаруживаются два хорошо разрешенных пика, причем коэффициент седиментации пика I (медленно седиментирующий компонент) Sei практически совпадает с Sc nMANa, a ScU (быстро седиментирующий компонент) близок к 5сншк*, φ =0,45. Площадь первого пика практически совпадает с площадью пика раствора свободного IIMANa, имеющего ту же концентрацию, что и концентрация nMANa в смеси с НПЭК*. Естественно, что запрет, накладываемый на перенос цепей БПЭ из частиц НПЭК*, исключает протекание реакций (2) и (3) слева направо. Это обстоятельство, однако, не должно было бы заметно повлиять на образование АНПЭК, образующихся при взаимодействии НПЭК* и nMANa и изображенных на схеме (5). Более того, в результате реакции сшивания (6) в модифицированных НПЭК* уменьшается количество карбоксильных групп и в то же время сохраняются положительно заряженные группы. Это должно было бы приводить к уменьшению электростатического отталкивания между частицами НПЭК* и цепями ЛПЭ. Тем не менее на седиментограмме (4) не удается обнаружить нового компонента, отвечающего частицам АНПЭК*. Как видно из схемы (5), состав АНПЭК должен отличаться от состава исходного НПЭК, при этом φ АНПЭК меньше <р исходного НПЭК. Уменьшение φ, сопровождающееся увеличением заряда частиц НПЭК, может приводить к уменьшению их коэффициента седиментации [1—3, 5].

Если частицы таких АНПЭК присутствуют в растворе, то не исключена возможность, что они седиментируют вместе с медленно седиментирующим компонентом. Для проверки этого предположения исследовали растворы полиэлектролитов при помощи сканирующей ультрацентрифуги. Этот метод позволяет судить о распределении в растворе полимерных компонентов, имеющих характеристическое поглощение в УФ-области спектра, таким полимером является ПВП. Как видно из схемы (5), частицы АНПЭК содержат ПВП, т. е. они должны регистрироваться этим методом. На приведенной ранее седиментограмме смеси НПЭК* (φ =0,45) и nMANa (рис. 4, 4) присутствуют два пика, тогда как на седиментограмме того же раствора, полученной на сканирующей ультрацентрифуге, наблюдается один четко выраженный пик с коэффициентом седиментации, близким к коэффициенту седиментации Sc п быстро седиментирующего компонента на рис. 4. Таким образом, в смесях НПЭК* и ЛПЭ также не удается экспериментально обнаружить частицы АНПЭК.

Это согласуется с высказанными выше предположениями о высоких скоростях реакций (1) —(3) и малом времени жизни промежуточных продуктов — АНПЭК. Такие промежуточные АНПЭК удается, однако, экспериментально наблюдать в системах, содержащих два типа ЛПЭ различной химической природы и обладающих разным сродством к общему для них БПЭ. АНПЭК обнаружены нами при изучении реакций между НПЭК IIMANa — ПВП и полиэтиленсульфонатом натрия, который обладает большим сродством к цепям ПВП по сравнению с nMANa

Купить неорганические реактивы, inorganic chemicals в Санкт-Петербурге

В каталоге товаров/продукции представлены неорганические реактивы - категории: ;

Купить органические соединения, реактивы, organic chemicals в Санкт-Петербурге

В каталоге товаров/продукции представлены органические соединения, реактивы - реактивы Карла Фишера для волюметрии, реактивы HYDRANAL, органические растворители, органические кислоты, органические соли и соединения, категории: reagents for Karl Fischer volumetry, other reagents HYDRANAL, organic solvents, organic acids, organic salts and compounds, ; , , , , органические соединения, органические соли,

реактивы Карла Фишера для волюметрии

Подробнее... Купить реактивы карла фишера для волюметрии - reagents for Karl Fischer volumetry в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Использование реактивов Гидранал позволяет определить воду в составе химических реактивов, пищевых продуктов, фармацевтическихпрепаратов. Содержание воды влияет на множество химических и физических параметров выпускаемой продукции. Реактивы Карла Фишера произв...

органические растворители

Подробнее... Купить органические растворители (organic solvents) в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Купить органический растворитель в Санкт-Петербурге по выгодной цене. Компания ХИМСНАБ-СПБ предлагает следующую фасовку растворителей: п/э или стеклянная бутылка 1 литр; п/э канистра 10 литров; п/э канистра 5 литров; стеклянный флакон 1 литр, бочка, и бочка, 250 кг. Реактивы и растворители...

органические кислоты

Подробнее... Купить органические кислоты - organic acids в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Органические вещества, проявляющие кислотные свойства (кислоты их кислые соли и средние соли содержатся во многих товарах. Благодаря наличию свободных кислот и кислых солей многие продукты и их водные вытяжки обладают кислой реакцией.   К ним относятся карбоновые кислоты, содержа...

Купить химические реактивы, chemicals в Санкт-Петербурге

В каталоге товаров/продукции представлены химические реактивы - вода, неорганические реактивы, органические соединения, реактивы, растворы, особо чистые вещества, категории: water, inorganic chemicals, organic chemicals, solutions, highly purified substances, ; дистиллированная вода, вода (УФ-ВЭЖХ) для аналитики, бидистиллированная вода, вода для молекулярной биологии, , , , ,

неорганические реактивы

Подробнее... Купить неорганические реактивы - inorganic chemicals в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Неорганическое соединение, как правило, представляет собой химическое соединение, которое не имеет связей СН , то есть соединение, которое не является органическим соединением Химические соединения, реагенты и реактивы находят свое применение в различных областях: научные-исследов...

органические соединения, реактивы

Подробнее... Купить органические реактивы - organic chemicals в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Купить органический реактив в Санкт-Петербурге по выгодной цене. химические реактивы химические реактивы химические реактивы хим. реактивы продукцию chemicals химические реактивы, chemicals вода, неорганические реактивы, органические реактивы, растворы, особо чистые вещества особо чистые веще...

растворы

Подробнее... Купить растворы - solutions в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. В каталоге ХИМСНАБ-СПБ представлен большой выбор готовых специальных растворов различного назначения: буферные растворы, растворы для заполнения, очистки и хранения электродов, стандартные растворы для кондуктометров, реактивы карла фишера для кулонометрии. Купить раствор в Санкт-Петербурге по выгодной цене: ...

особо чистые вещества

Подробнее... Купить особо чистые вещества (ультрачистые вещества) в Санкт-Петербурге, в компании Химснаб-СПБ, телефон +7-812-337-18-93. В высокочистых веществах содержатся примесей в незначительном количестве, что они не влияют на основные специфические свойства веществ. Свойства особо чистых веществ используют для создания новых приборов, устройств и технологических процессов. Они находят применени...
Оставьте заявку ON-LINE или позвоните. Менеджер компании ответит на ваши вопросы.

Широкий ассортимент

В каталоге компании более 4000 наименований продукции в 200 товарных категориях: химические реактивы, лаб. оборудование и посуда, аксессуары и принадлежности для лабораторий, различные виды удобрений, химическое сырьеи многе другое. Можно подобрать продукцию воспользовавшись фильтром характеристик.

Опт и розница

Осуществляем продажу оптом и в розницу. В каталоге Химснаб-СПБ можно заказать широкий спектр веществ различных квалификаций: «Технический» («тех.»); «Чистый» («ч.»); «Чистый для анализа» («ч.д.а.»); «Химически чистый» («х.ч.»); «Особо чистый» («ос.ч.»); имп.: неорганические реактивы, органические реактивы, особо чистые вещества, растворы (буферные растворы, растворы для очистки и хранения электродов, растворы для кондуктометров), химическое сырье и компоненты. Продукции для лабораторных исследований.

Проверенные поставщики

Компания реализует товары и продукцию только от проверенных поставщиков гарантирующих качестно продукции.

Консультация по продукции

Менеджеры компании проконсультируют вас по ассортименту реализуемой продукции, звоните в рабочее время

Доставка

География потребителей выходит за пределы России, компания "Химснаб-СПБ" осуществляет доставку приобретаемых товаров и продукции по Санкт-Петербургу, Ленинрадской обл, России и странам СНГ.

Индивидуальный подход

Строим свое сотрудничество с клиентом с учетом всех пожеланий клиента. Гибкий и индивидуальный подход к каждому клиенту, ориентированность на долгосрочные партнерские отношения, строгое соблюдение оговоренных сроков и предоставления документов заказчику являются неоспоримыми преимуществами компании "Химснаб-СПБ". Мы заботимся о том, чтобы каждый наш клиент остался доволен приобретаемой продукцией и полученным результатом, который является нашим общим успехом!

Малотоннажная химия

Реализация продукции малотоннажной химии: продукция химической и нефтехимической промышленности. Малотоннажная химия дает возможность на скромном оборудовании и в небольших объемах производить дорогостоящие модификаторы, пластификаторы, ингибиторы и другие микродобавки, способные наделять конечный продукт новыми свойствами

Комплексное снабжение, оснащение

Компания Химснаб-СПБ имеет многолетний опыт работы на рынке химической продукции и лабораторного оборудования. Компания тесно сотрудничает со многими промышленными и производственными организациями и имеет возможность осуществлять комплексное снабжение и оснащение предприятии различных отраслений промышленности необходимым оборудованием и расходными материалами.

Предствленная информация на страницах данного интернет-сайта и в каталоге продукции носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 (2) Гражданского кодекса РФ. Для получения подробной информации о наличии и стоимости указанных товаров и (или) услуг,обращайтесь к менеджерам отдела продаж: форма обратной связи, e-mail, телефон.

Реализация продукции для сельского хозяйства, химической, строительной, нефтегазовой, металлургической, текстильной, кожевенной, и других отраслей промышленности.

Рады проконсультировать Вас

Менеджер ХИМСНАБ-СПБ

Возникли вопросы, звоните: пн-пт с 9:00 до 17:00 или оставьте Ваш телефон и мы Вам перезвоним.
Форма с указанным ID не существует.
Офис-склад компании: СПб, ул. Швецова, 23. Ст. Метро “Нарвская”. Открыть страницу Контакты

Предлагаем широкие возможности для комплектации химической продукцией производства и исследовательских лабораторий в различных отраслях промышленности.

«ХИМСНАБ-СПБ» - Ваш надежный поставщик

Поставка химической продукции и лабораторного оборудования является ключевым направлением деятельности компании с 1996 года.

Компания «ХИМСНАБ-СПБ» успешно осуществляет поставку широкого спектра лабороторного оборудования, приборов и другой химической продукции на рынке Северо-Запада Российской Федерации.


  • Широкий ассортимент продукции
  • Опт и розница
  • Консультация по продукции
  • Доставка транспортными компаниями
  • Индивидуальный подход
  • Проверенные поставщики
  • Малотоннажная химия
  • Комплексное снабжение, оснащение
О компании Химснаб-СПБ