Конверсия диоксида углерода в метанол, диоксид углерода, водород и моноксид углерод

способ конверсии диоксида углерода в метанол, важное органическое соединение для производства пластиков, адгезивных материалов и растворителей, а также перспективного топлива транспортных средств. Ученые из Стэндфордского Университета и Технического Университета Дании скомбинировали теорию и эксперименты для обнаружения нового никель-галлиевого катализатора, который может конвертировать водород и диоксид углерода в метанол.

Использование чистого водорода, диоксид углерода, водород и моноксид углерод

В ходе реакции, ускоряемой новым катализатором, образуется меньшее количество побочных продуктов, чем при других известных каталитических процессах конверсии диоксида углерода и водорода в метиловый спирт. Произвордство метанола организовано на больших заводах, где при высоком давлении реагируют диоксид углерода, водород и моноксид углерода (последний добывают из природного газа). Штудт заявляет, что при выполнении нового проекта Ученые хотели разработать процесс получения метанола из более чистых в экологическом отношении источников таким образом, чтобы при этом образовывалось меньшее количество моноксида углерода.

Цель проекта – разработка нейтрального по углероду крупномасштабного производства с использованием чистого водорода. Был разработан новый никель-галлиевый катализатор (Ni5Ga3), позволяющий синтезировать метиловый спирт из углекислого газа и воды. Производится ежегодно около 65 миллионов тонн метанола, который применяется для изготовления красителей, полимеров, клеящих композиций и других продуктов.

Медь, цинк и алюминий

На обычном производстве метанола происходит конверсия природного газа и воды в синтгаз (синтетический газ), состоящий из угарного газа, углекислого газа и водорода. На следующей стадии производства происходит конверсия синтгаза в метанол под высоким давлением в присутствии катализатора, содержащего медь, цинк и алюминия.

Медь-цинк-алюминиевого катализатора синтеза метанола

Ученые провели немалое время, изучая процесс синтеза метанола на молекулярном и промышленном уровнях. Заняло три года на полное уяснение особенностей процесса и определение активных центров медь-цинк-алюминиевого катализатора синтеза метанола. Определили особенности синтеза метанола на молекулярном уровне, они начали охоту на новый катализатор, который мог бы обеспечить синтез метанола при низких давлениях только из диоксида углерода и водорода. Вместо крупномасштабного скрининга потенциальных катализаторов в лаборатории Ученые решили найти подходящий катализатор с помощью специализированной базы данных катализаторов.

Медь-цинк-алюминиевый катализатор

Штудт сравнил традиционный медь-цинк-алюминиевый катализатор с тысячами материалов, содержащимися в базе данных. Наиболее многообещающим кандидатом на роль нового катализатора оказалось малоизвестное соединение, известное как никель-галлий. Найдя кандидата, Ученые решили проверить его свойства с помощью эксперимента. Ученые осуществили синтез твердотельного катализатора на основе никеля и галлия, после чего был проведен ряд экспериментов, цель которых была определение каталитической активности нового катализатора в получении метанола при комнатной и других температурах. лабораторные испытания показали, что компьютер помог исследователям сделать правильный выбор. При высоких температурах никель-галлиевый катализатор (Ni5Ga3) способствует образованию большего количества метанола, чем обычный медь-цинк-алюминиевый катализатор, образуя при этом, добавим, гораздо меньше моноксида углерода.